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Abstract

This paper presents a novel approach to combine shape
descriptors. Each approach is applied on several clusters of
objects. For each cluster and for any descriptor a map is as-
sociated directly from the confusion matrix. Such a method
allows to determine automatically the better weight asso-
ciated to the descriptor for the object under consideration.
At last, we show that the additive combination of such mea-
sures allows to improve the classification.

1. Introduction

There have been relatively few studies of combining
the similarity responses of shape descriptors. Generally the
“better”! descriptor is searched and applied. This, in turn
requires efficient ways for recognizing objects [5], or at
least for identifying object signatures. The relatively low
amount of work in this area is probably due to the huge
variety of objects encountered, depending on the type of
image or documentation which has to be processed. Gen-
erally photometric shape descriptors can be split into two
categories [18]: contour-based and region-based approaches
with well known advantages and drawbacks. Due to the
large variability of the objects the use of invariant de-
scriptors is required for their identification and recogni-
tion. Many approaches have been proposed in the early
years either based on Fourier descriptors [10, 13], on mo-
ments [2, 16], on Hough transform [1, 9] or on angular de-
scription [4, 15]. In this paper we focus on basic global
methods having low processing time but allowing to keep
nice geometrical properties as translation, rotation and scale
factor. For a thorough survey of the various techniques
and descriptors which may be used, the reader may re-
fer to [8, 11, 18]. Another problem encountered in pattern
recognition is the kind of distance calculated during the

1 We aware that the notion of better usually written — for pattern recog-
nition methods, segmentation, ... — can only refer to the application
under consideration even if it is widely used.

matching. In this scope, generally the metric is related to
the application problem under consideration. Metrics such
as Bhattacharya [3], Euclidean distance or EMD [12] are
widely used from statistical studies and related to the stud-
ied application. Here we used Euclidean distance to com-
pare scalar values and the classical Tanimoto index (min
over max) for vector description of an object. This yields in-
teresting results in our application, with only low process-
ing time requirements. The aim of this paper is to assign to
each descriptor a recognition map. That is to define auto-
matically a descriptor measure for each object. Such func-
tion could be different for another object for a same descrip-
tor. Descriptors used in our study and associated properties
are provided in section 2. Simple classification measures are
proposed in section 3 to study the behavior of our method.
The scheme used to defined measures from the behavior of
shape descriptors is presented in section 4. Finally exper-
imental studies and a discussion about the advantages and
limitations of our approach are given in sections 5 and 6.

2. Set of Basic Descriptors

We focus here on basic operators having low process-
ing time and easy to implement. We draw for each of them
their behavior from standard geometric transforms like ho-
motety, rotation or translation.

2.1. Compactness

The compactness is the more common descriptor which
can be found in the literature. Its approximation is maxi-
mal for a large disk (near one) and minimal for a discrete
straight line. An usual formulation is:
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with P the perimeter and M, the surface. Such feature is
by definition invariant to basic geometric transforms as ro-
tation, translation and scale factor. Its calculation requires a
low processing time. Nevertheless it has a high sensitivity to



noise and gives rise to low recognition rates when the num-
ber of objects to recognize grows. Such descriptor is rather
suitable to split databases in more or less elongated clus-
ters or dedicated for specifical applications having well dif-
ferentiated shapes. In this paper, objects are classified fol-
lowing the distance of their compactness value.

2.2. Ellipticity Degree

The ellipticity corresponds to the ratio of the big axis and
the little axis [16]. Its expression is given by:

(@)

o \/(M20 + Mo2) + v/ (Mao — Mo2)% + 4 - M2,
(Mao + Mo2) — /(Mo — Mo2)2 + 4 - M3

Where M, are the moment of order j + g. Such descriptor

is invariant to rotation, translation and scale factor. More-
over it is low sensitive to noise as it considers the global
shape of the object. Normalized values of distance are com-
pare.

2.3. Angular Signature

We used here a simplified version of the angular signa-
ture proposed by T. Bernier et Landry[4]. A vector is com-
puted from the centroid X.(x.., y.) of the shape as follows:

d(X1,Xe) d(Xn,XC)
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with d the Euclidean distance. S 4 corresponds to the suc-

cessive distances, with a regular angular step, between the
centroid X, and the farer point X; of the contour normal-
ized by the area of shape and n is the number of processed
directions. The method proposed in [4] was adapted to keep
fast processing. The derivative of the signature is not stud-
ied to take into account the rotation by extracting the max-
ima. We consider here the maximal diameter of the object.
Then a similarity ratio is directly computed from superim-
posed signatures recentered using their maximal diameter.
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2.4. Generic Fourier Descriptors

The polar discrete transform [17] is required to compute
such signature. It is similar to Fourier transform but consid-
ering the polar image in a polar space as a rectangular im-
age in a Cartesian space. The mathematical expression is:

PF(p.¢) = 3. 3 I(w,y).lom(“ipreeo)] 4
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The radius r(x, y) and the angle v(z,y) are the polar coor-
dinates of the point (x, y) from the centroid frame of the ob-
ject. I is the intensity function. The parameters p and ¢ are
bounded: 0 < p < Rand 0 < ¢ < T with R and T re-
spectively the radial and angular resolutions. The Fourier

descriptor is parameterised by two frequencies: m the ra-
dial frequency and n for the angular frequency [17]:
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GFD is invariant to scaling, translation and rotation and
low sensitive to noise effect. The distance between two
shapes is directly given by the distance of the associated
vectors. We can denote that such method is easy to imple-
ment and a full algorithm is provided in [17].

2.5. R-Signature

The Radon transform of a function f, denoted T'ry, is de-
fined as its line integral along a line inclined at an angle 6
and at a distance p from the frame [6]. A shape measure,
called R-signature [15], can be defined from the Radon
transform as follows:

Ry(0) = / Trs(p. 0)dp ©)
Such signature allows to have an idea of the angular dis-
tribution of a shape considering its global aspect and none
is centroid. It is by definition invariant to translation. The
normalization by the area allows to take into account the
scale factor. Circular shifts are performed to keep the rota-
tion property. At last, the similarity measure used to com-
pare two R-signature is based on the classical Tanimoto in-
dex.

3. Classification Measures
3.1. Confusion matrix

A confusion matrix allows to evaluate the power of
recognition of a descriptor following the current applica-
tion. Generally a head of cluster if defined assuming that
it is a well representation of the cluster. The samples are
stored in the matrix by considering the cluster values of the
distance reached from all the heads. Such a process requires
static objects. Another way consists in adding in the ma-
trix the cluster numerous of the nearest sample. Here, we
consider each samples of the database as a query to have a
more discriminate matrix. For each query we sort the other
objects by decreasing distance (or decreasing similarity ra-
tio). Then we analyse the clusters corresponding to each el-
ement of the series achieved. The ranking takes into account
all the positioning of the samples of the cluster associated
to the query. The confusion matrix is made by correspond-
ing the numerous of clusters found in the initial positions.

3.2. Ranking

The ranking is a well-known measure of retrieval [7]
adapted here to show the robustness of the method. Let us



consider a cluster c, its ranking value is defined by:
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where N = C - S is the number of objects contained in
the database and cl(o., 1) is the target cluster of the element
1 of the increasing series of scores (see previously) com-
puted from the object query o.. ¢ is set to one when then
element ¢ corresponds to the cluster ¢ and 0 otherwise. Val-
ues between 0 and 1 can also be integrated if we have a
priori knowledge of valuated similarity between clusters.
When the size of the database grows the evolution of the
ranking provides an interesting assessment about the stabil-
ity of the shape descriptor.

4. Automatical Definition of Measures

A descriptor is generally considered discriminant, un-
der an application, when the associated recognition rates are
high that is. A confusion matrix is used here to assess the
power of recognition of descriptors. By definition if objects
are correctly recognized they should be assigned to the cor-
responding yarget cluster. Bad recognition remains to a dis-
parate distribution of the objects on the lines of the confu-
sion matrix. Let table 1 be a confusion matrix achieved us-
ing the database provided in the experimental section. There
exists 9 clusters having 11 samples. The descriptor used is
the compactness. The aim is not to study the compactness
but to underline the processing step performed for any de-
scriptor considering any confusion matrix.
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Cluster | 1 2 3 4 5 6 7 8 9
1 28 30 0 7 19 0 22 0 15
2 29 51 0 7 5 0O 20 0 9
3 0O 0 4 4 0 30 0 42 1
4 7 6 4 47 19 0 7 1 30
5 20 6 0 17 34 0 15 0 29
6 0O 0 33 0 0 49 0 39 0
7 20 30 0 7 16 0O 43 0 5
8 0O O 4 0 O 35 0 46 O
9 16 11 0 25 29 0 3 0o 37

Table 1. Compactness confusion matrix us-
ing cluster 6.

Let us consider, for example, the line 6" of the matrix.
The values correspond to the distribution of the objects of
the cluster number 6 achieved from the calculation of com-
pactness criterion. We can denote that the samples are rather
assigned to three clusters (3, 6 and 8). The recognition rate

is around 40% (number of correctly classified objects di-
vided by the number of tested objects that is 49/121). Let
us now consider a low recognized cluster. For instance the
line 5. In this cluster the distribution is relatively homo-
geneous between the different clusters and so less discrimi-
nate than for the previous example. That is underlined by a
graphical representation of the rates provided Figure 1. The
dissimilarities are obtained by computing the mean of the
distances. The distance, for one cluster, is equal to the dif-
ference between the values of the distance of these objects
and the one of the searched cluster. We can conclude that
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Figure 1. Difference between discriminating
descriptor (right) and not (left).

it is important to take into account not only the recognition
rate but also the distribution of the errors in order to im-
prove the recognition process. Thus starting from this infor-
mation one definite a function of confidence (which repre-
sents the number of images correctly recognized on the to-
tal number of image at a distance given). On the graph 2 we
can see the influence of this curve of confidence : the im-
ages corresponding to the required class have the smallest
distances . The aim is to integrate the behavior of each sym-
bol of the database. Obviously functions may be different
for two objects. Then it is important to define different ap-
proximations to improve the global recognition. The higher
the value of the weight the higher the confidence on the de-
scriptor is. Nevertheless considering one cluster a descriptor
can be more discriminating than another one. That is under-
lined by the value of the weight reached. The score is given
by:

Score = Z Fic(1 — (0t — o%)) (8)

i=1,d

where d is the number of descriptors (here 5). Fy. is a
weighted function of descriptor d for the cluster ¢ defined
from the distance distribution of cluster samples. o¢ and 0%
are respectively the vector of descriptor d for a object of the
cluster c and of the cluster searched.
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Figure 2. Influence of weighted function F,. (left) on distance between images of cluster 1 and learn-

ing database images (before/after).

5. Experimental study

100
90 /r—/'\ /\ - Compactness
First, a database of D. Sharvit [14] who . 8 - =5 s - Ellipticity Degree
made it kindly available to us on his Web site: £ 0T Vi S W D e »
< . sl 93 = 60 A = i Angular Signature
http://www.lems.brown.edu/vision/researchAreas/SIID/ s . 7 7 A\ W\ [/
hgs been used.' Such database consists of nine categories & 0 [ v\ / \V/\ gzggﬁ'gg&“”e’
with 11 shapes in each cluster. Some shapes are occluded or g 20 7 72 “— |~ R-signature
distorted and objects are scaled or rotated. We can see (Fig- fg ’ ) DR
ure 3) that the proposed approach improves the recognition 0 - ‘ .
rates for most of the descriptors considering the whole clus- 1 2 3 4 5 6 8
ters. Table 2 presents the mean recognition rates. W is Clusters
a normalized weighted sum where the weights are di- _—-
rectly defined by the recognition rates reached for all the o - //\ \//'\ [~ Compactness
descriptors applied separately on the dz}tabase. The re- . 80 4 N - Ellipticity Degree
sults are provided be fore and a fter running the approach £ 70 il i ;
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proposed in section 3. We can remark that the combina- 5 7\ A
tion of measures improves the recognition. g = s W NV KR Generic Fourier
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Reco.Rates | C E Sax Gpp Trsr Wg i — Weighted sum
Before 35 43 60 73 54 78 0 N [
After 39 45 62 73 55 90 12 3 4 5 6 7 8 9
Ranking C E Sx Gpp Trr Ws Clusters
Before 87 85 88 96 89 97
After 91 91 96 98 92 100 Figure 3. Recognition rates by descriptors.

Table 2. Using Sharvit’s database.

Another test database consists of dropped initials?. Such
letters require a post processing in order to be usable within

2 We would like to thank the Centre d’études Supérieures de la Renais-

sance for the permission to use their archival documents

the framework of our application, as provided figure 4. Af-
ter applying algorithms of dilation and erosion, a set of
rules and measures (size, compactness...) allows to choose
the good related component to extract. Thus we obtained a
database made up of 9 letters declined into 11 noisy sam-
ples. We carry out same measures on this database (Ta-
ble 3) and we could note an consistent improvement us-



Figure 4. Example of extraction of letters.

ing our method. Then we have considered increasing sizes
of databases (using a greater database of reference letters
merged with the previous one). The results achieved show
that our approach remains stable, in this example, when the
database grows (Table 4).

Reco.Rates | C FE Sy Gpp Trs Wg
Before 49 41 70 59 50 55
After 52 39 75 69 50 72
Ranking C FE Sy Gpp Trr Ws
Before 8 78 90 89 80 96
After 93 81 97 94 87 100

Table 3. Using database of dropped initials.

Reco. Rates | Size 2xS 3xS 4xS 5xS
Before(Ws) | 55 64 58 60 55
After(Wg) 72 88 84 84 75

Ranking Size 2xS 3xS 4xS 5xS
Before(Ws) | 96 96 95 95 90
After(Wg) 100 100 99 99 95

Table 4. Using increasing Sizes (noted S) of
databases.

6. Conclusion

In this paper, we have shown that the definition of mea-
sures for a set of descriptors can be of great interest for rec-
ognizing objects. These results are very promising; how-
ever, they still need further validation by processing much
larger databases in order to assess the discriminating power
and the robustness of the proposed method. In this case, it
may be necessary to add some indexing scheme, both for ef-
ficiency and for discrimination. We are planning to test the

construction of a binary search tree associating each node
with the more discriminating feature found.
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