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Abstract 
 

In this paper we address the problem of segmenting 
complex handritten pages such as novelist drafts or 
authorial manuscripts. We propose to use stochastic 
and contextual models in order to cope with local 
spatial variability, and to take into account some 
prior knowledge about the global structure of the 
document image. The models we propose to use are 
Markov Random Field models. After a formal 
description of the theoretical framework of Markov 
Random Fields and the principles of  image 
segmentation using such models, we describe the 
implementation of our model and the proposed 
segmentation method. Then we discuss the results 
obtained with this approach on the drafts of the 
French novelist Gustave Flaubert, for different 
segmentation tasks. In conclusion, an extension of this 
work towards the use of discrimative models is 
discused. 

 
 
1. Introduction 
 

These last years improvements have been made in 
the field of handwriting recognition, especially in the 
context of industrial applications such as check 
reading, postal address recognition or form 
processing,... These applications have been mainly 
focused on word or phrase recognition [1]. However 
with the advance of digital technologies, numerous 
institutions are moving towards the use of digital 
document images rather than traditionnal paper copies 
of the original documents. This situation raises new 
needs for indexing and accessing to these numerical 
sources [2]. 

In this context of shared access to our cultural and 
historical heritage, the Bovary Project, a digitization 
program of the manuscripts of the famous novel 
"Madame Bovary" of Gustave Flaubert, aims at 
providing a numerical web edition1 of the genesis of 
this novel, to browse the original manuscripts of 
Flaubert associated with diplomatic textual 
transcriptions respecting as much as possible the 
layout of the original manuscripts. Such a numerical 
edition will be of great interest for researchers in 
literary.  

However the production of the textual 
transcriptions of the 4127 manuscripts that constitute 
the Bovary directory is a challenging task. 
Considering the state of the art of document image 
analysis techniques, as well as the extreme variability 
of Flaubert’s drafts, full automation of the process 
cannot be envisaged yet. 

For this reason a network of volunteers has been 
recruited. However, it is assumed that their work could 
be greatly facilitated thanks to the use of automatic 
document analysis techniques. This is why we 
investigate the use of such methods with the aim of  
applying them to archived handwritten documents. 
First goal is  to identify the regions of interest such as 
marginal annotations or deleted paragraphs, by 
extracting the layout of the manuscripts and allowing 
further manual or automatic indexing using layout 
information, transcription production or text/image 
coupling for genetic edition. 

Many methods dédicated to machine printed 
document segmentation have been proposed [3], but 
these methods cannot be directly applied to 
handwritten documents because of the spatial 
variability of handwriting. The few existing methods 

                                                        
1 http://www.univ-rouen.fr/psi/BOVARY 



dedicated to handwritten documents focus on a 
particular type of documents or a particular 
segmentation task (word or line extraction only). 
Furthermore these methods are based on a local 
analysis, and sometimes fail to find the correct 
solution. It is the reason why we propose to use a 
general formalism that could be adapted to different 
types of documents, and which takes into account 
some contextual information. Hidden Markov Random 
Field formalism has been retained for this purpose. 
Markov Random Field models have been widely used 
during the last twenty years for differents tasks of 
image analysis such as denoising, restoration, 
binarization and segmentation. Little work has been 
done however on document image analysis, and as far 
as we know, never on handwritten documents. 

We propose to use Markov Random Field for the 
task of complex handwritten document image 
segmentation, such as authorial drafts or historical 
documents, and we present here an application 
consisting in the segmentation of Flaubert’s 
manuscripts into their elementary parts, namely: text 
lines, erasures, punctuation marks, inter-linear 
annotations, marginal annotations (just to mention the 
most important of them) or to detect area of interest 
such as text body, header, margins, footer, ... In the 
Markov Random Field framework, segmentation is 
adressed as an image labeling problem. This problem 
is solved using optimization techniques. In section 2 
we describe the theoretical framework of Markov 
Random Fields, then in section 3 we present our 
implementation for authorial manuscripts 
segmentation and we discuss the results obtained in 
section 4. Then we propose in section 5 a discussion 
about the evolution of our segmentation system 
towards the use of Conditional Random Fields to cope 
with some limitations of Markov Random Fields, and 
we present our first preliminary works with this type 
of models. We conclude in section 6. 
 
2. Theoretical framework 
 

Each document image is considered to be produced 
by implicit layout rules used by the author. While 
these rules cannot be formaly justified, it is however 
experimentaly verified by literacy experts that 
Flaubert’s manuscripts exhibit some typical layout 
rules characterized by an important text body 
occupying two thirds of the page and containing a lot 
of erasures; and a marginal area with some text 
annotations, as can be seen on figure 1. 

As there exist some local interactions between these 
layout rules, a Markov Random Field (MRF) seems to 
be adapted to model the layout of a manuscript. 
Furthermore we deal with handwritten documents 
characterized by some local spatial variability in the 
layout, therefore a stochastic model appears to be well 
suited to cope with the spatial variability of layout 
elements.  

 
Figure 1. One example of Flaubert’s 

manuscript layout. 
 
According to MRF formalism [4], the image is 
associated with a rectangular grid G  of size 

mn × . Each site s , or location in the image, is 
associated to a cell on the grid defined by its 
coordinates over G  and is denoted 

mjnijig ≤≤≤≤ 11,),( . The site set is 
denoted { }sS = . 
Following the stochastic framework of Hidden Markov 
Random Fields, the image gives access to a set of 
observations on each site of the grid G  denoted by 

{ }mjnijioO ≤≤≤≤= 11,),( . Furthermore, 
considering that each state sX  of the Markov Field 
X  is associated to a label l  that takes its value in a 

discrete and finite set of q  label { } qilL i <<= 0, , 
and corresponding to a particular layout rule or class 
pattern, the problem of layout extraction in the image 
can be formulated as finding the most probable state 
configuration among all the possible labeling E  of the 
field X  that can be associated to the image, i.e. 
finding: 

( ) ( ))()(maxarg),(maxarg XPXOPOXPX
EXEX ∈∈

∧
==  



which results in the following formula when applying 
Markovian hypothesis and independence assumption 
of observations: 

( ) ( ))()(maxarg),(maxarg XPXOPOXPX
EXEX ∈∈

∧
==  (1) 

 
where ( )sNG  is the neighborhood of the site s. 

While in this expression the term ∏
s

ss xoP )(  can 

be computed using Gaussian mixtures to model the 
conditional probability densities of the observations, 
the calculation of the second term (i.e. 

∏ ∈′′
s

Gss sNsxxP ))(,( ), which represents the 

contextual knowledge introduced by the model or prior 
model, appears to be intractable due to its non causal 
expression i.e. interdependance between neighboring 
states. To overcome this difficulty, one generally uses 
simulation methods such as Gibbs sampling or 
Metropolis algorithm [5]. Another possibility is to 
restrict the expression to a causal neighboring system. 
In any case however, finding the optimal segmentation 
solution requires a huge exploration of the 
configuration set E . This consideration is especially 
important because handwritten document images are 
particularly large. Image decoding using Markov 
Random Field models is an optimization problem. It 
consists in finding the realization x̂  of the label field 
X  which maximize the posterior probability ( )OXP /  

of the observations set O  and the label field X , or 
similarly an energy function. This is related as MRF-
MAP framework. 
Indeed according to the Hammersley-Clifford 
theorem, a MRF is equivalent to a Gibbs distribution 
[4], so that the second term of equation 1, formally the 
prior model ( )XP , can be rewritten as follows: 
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where C is the set of all cliques over the image, 
defined according to the choosen neighboring system 

( ){ }SssNN GG ∈= , . cV  is a potential function 
associated to the clique c  and Z  is a normalization 
constant called partionning function in the context of 
MRF framework. This allows to introduce the joint 
energy ( )OXU ,  of a configuration of the field, by 
calculating  the negative logarithm of the joint 
probability: 

( ) ( )∑∑
∈

+−=
Cc

c
s

ss XVxoPOXU )(log),(  

Thus in the MRF-MAP framework, decoding or image 
labeling involves minimizing the joint energy 
function: 

( )OXUx
x

,minargˆ =  

It is a non trivial combinatorial problem, because the 
energy function may be non convex and exhibits many 
local minima. Different optimization techniques can 
be used to find the optimal configuration of the label 
field by minimizing the energy function. We 
distinguish methods based on relaxation and methods 
based on dynamic programming. Furthermore some 
are deterministic and other stochastic. Another 
important criterion is their ability to find the global 
optimum of the energy function. The following table 
gives a classification of the main approaches of the 
literature, namely Simulated Annealing (SA), Genetic 
Algorithms (GA), Ant Colony System (ACS), Iterated 
Conditional Modes (ICM), Highest Confidence First 
(HCF) and Region Merging method, according to 
these criteria. 
 
 relaxation methods 
 deterministic stochastic 

dynamic 
programming 

optimal   SA[5], 
GA[12], 
ACS [13] 

 

suboptimal ICM[7], HCF 
[8] 

 region merging 
method [9] 

Tab 1. classification of decoding methods 

 
We describe in the following subsections the 
techniques most used in practice. 

 
2.1. Simulated Annealing 
 
This optimization method has been proposed by 
Kirkpatrick [6] in 1983 and introduced in computer 
vision by Geman and Geman [5] for image restoration 
using MRF-MAP framework. It is a stochastic 
relaxation algorithm based on Metropolis sampling 
method, which in theory allows to find global minima 
of the energy function. This algorithm uses a so called 
"temperature" parameter which controls random label 
flipping, even if these label changes do not decrease 
the global energy. This process allows a random 
exploration of the search space and prevents 
convergence to local minima. The higher the 
temperature parameter the higher the probability of 
label changes. On the contrary if the temperature is 
low only label changes which decrease the energy are 



authorized. During the relaxation process the 
temperature parameter is gradually decreased starting 
from a high value, according to a predefined cooling 
function. In order to provide converge to global 
optimum one has to set the initial value of the 
temperature parameter high enough, and has to use an 
adapted temperature decreasing function, that is slow 
enough. In theory a logarithmic cooling function is 
recommanded. For each temperature value, several 
relaxation iterations are done on the entire image site 
set. Sites are visited randomly or according to a 
predefined strategy. The number of iterations has to be 
high enough too. In the simulated annealing method 
only  the temperature and the number of iteration must 
be predefined. The optimality of the final solution and 
the computational cost depend closely on the setting of 
these parameters. The main problem is that there is no 
theorical rule for determining the correct values. In 
practice they are determined empirically. Another 
main drawback of this algorithm is its prohibitive 
computational cost. In fact, this algorithm explores the 
search space « blindly » and therefore requires many 
updates of the label configuration before convergence. 
The main advantage of this algorithm is that it doesn't 
require any particular initialisation of the label field, 
the exploration of the search space can start from any 
configuration. 
 
Choose an initial temperature T=T0 
choose any initial configuration x(0) of 
the label field X 
repeat 
    i=0 
    repeat 
       Choose a site s (according to any 

visit strategy or randomly) and  
randomly change its                      
label x into z .  

       Compute  )()( zXUxXUU ss =−==∆                         
       if ∆U >0 replace x by z 
       else replace x by z only if  

p < exp(∆U/T) p ∈ [0,1]  
       (uniform distribution) 
       i++ 
      until i = Niter 
T= f(T) = α.T    until 0 < α <1 
until T < e (freezing) 

Algorithm 1. simulated annealing algorithm 
 
2.2. Iterated Conditional Modes (ICM) 
 
The Iterated Conditional Mode (ICM) Algorithm has 
been proposed by Besag [7] in 1986. It is  an iterative 
and deterministic relaxation algorithm based on 

gradient descent strategy which converges quickly to a 
local minimum of the energy function. The ICM 
algorithm can be considered as a special case of the 
simulated annealing with a null temperature, that is 
with no energy increase allowed. For each image site, 
the label which gives the largest local energy decrease 
is chosen. The principle of the algorithm is the 
following. Starting from an initial configuration of the 
label field, all the image sites are visited according to 
a predefined strategy, and their label are updated by 
the one that gives the largest local energy decrease, 
thus causing a decrease of the global energy of the 
label field. As the modification of a site label may 
modifiy the local energy of the neighbouring sites, the 
process is repeated until convergence to a local 
minimum of the global energy of the label field or 
until a predefined stop condition is reached. This stop 
condition can be for example the number of modified 
labels during one iteration or the number of performed 
iterations. This method is very fast but the final 
quality of the segmentation depends strongly on the 
initial configuration of the label field, since only local 
minima of the energy function can be reached. This 
algorithm is recommanded with a performant 
initialization process which is able to produce initial 
configurations near the global minima of the energy 
function. 
 
Label field initialization )0(x  

Computation of the new label field 

configuration  )1( +nx  from previous 

configuration )(nx  

  1.sites s are visited according to a 
predefined visit strategy 

    ),)((minarg)1( ssss
Ll

s yYlnXUnx ===+
∈

  

with { } qilL i <<= 0  

    n=n+1 
  2.Back to step 1. Until stop criterion 

is reached. 

Algorithm 2. ICM algorithm 

 
2.3. Highest Confidence First (HCF) algorithm 
 
The Highest Confidende First (HCF) algorithm 
introduced by Chou and Brown [8], is a variant of the 
ICM algorithm, and is therefore  a determinnistic 
relaxation algorithm too.  



Considering the fact that the visit order of the sites 
influences the convergence of the relaxation process. 
Instead of examining all the sites systematically 
without any prior knowledge to lead the process, the 
main idea of this algorithm is to use a particular 
strategy. 
The site labels are updated successively according to a 
stability criterion, starting from least stable sites. With 
this strategy, only unstable sites are considered. The 
stability mesure is calculated as the difference between 
the current local energy of a site, and  the possible 
lowest local energy for this site.  
The least stable site is always processed first, because 
it is the most likely to change its label and a label 
change may have some incidence on the labeling of 
neighbouring sites. A heap is used to control the visit 
order. In this heap sites are ordered according to their 
stability mesure. The site at the top of the heap is the 
least stable. The algorithm stops when all sites are 
stable. 
 
All sites are marked as "uncommitted"  
 
Compute the stability G of all sites and 
create a heap P according to stability 
mesure, where the least stable site is 
placed at the top. 
 
Take the first s at the top of the heap 
P. 
 
if GS >= 0, where GS is the stability 
mesure of site s end 
else 
 if s is an uncommitted site, 
commit it and associate label l which 
gives the lowest local energy 
 else change its label l to the 
label lmin which gives the largest local 
energy decrease 
 end if 
 
Update stability mesure of site s and of 
its neighbours 
 
Put the site s in heap again. 
Adjust heap P according to stability 
mesures. 
end if 

Algorithm 3. HCF optimization method 

 
2.4. 2D Dynamic Programming 
 
In 2003 Geoffrois proposed to adapt the Dynamic 
Programming principle  which is one-dimensional in 
nature, to two-dimensional or n-dimensional spaces in 

general [9]. Before that the principle of the Dynamic 
Programming had already been applied by Derin and 
al. [10] for MRF-based image segmentation in 
computer vision. This principle of 2D Dynamic 
Programming has been applied by Geoffrois in the 
context of MRF-MAP framework to energy 
minimization, for handwritten digit recognition using 
MRF [11]. This algorithm allows to solve this problem 
efficiently, by exploiting the grid structure of random 
fields. The main idea is to divide the image recursively 
into subregions. The n  best configurations of a region 
are determined among the nn×  configurations 
obtained by merging the two subregions it contains. 
This merging process is repeated iteratively starting 
from unitary subregions corresponding exactly to one 
site, and for which initialization is simple (Maximum 
Likelihood of the data term of the energy function), 
until a region covering all the image is obtained. This 
method uses the "divide and conquer" principle of 
dynamic programming. 
Assume that two neighboring rectangular regions 1O  
and 2O  are associated to their respective state 
configuration ( )jiX ,1  and ( )jiX ,2 . Then, the joint 
probability of region 21 OOO ∪=  and its associated 
state configuration ( )vuX ,  defined by: 
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can be derived as follows: 

( ) ( ) ( ) ( )212211 ,,,, XXIOXPOXPOXP =  
where the expression 

∏
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denotes the interactions between the two state 
configurations. If we take into account the contextual 
local dependance between sites in Markov Random 
Fields, it appears that there are only interactions 
between sites belonging to the boundaries of the 
regions during the merging process. In consequence it 
is not necessary to determine all the possible 
configurations of entire regions, but simply all the 
configurations of region boundaries, and for each of 
them the best configuration of the inside. This allows 
to reduce the number of configurations to memorize 
during the merging process. However in pratice the 
number of configurations to memorize is high, 
especially if the image is large. This is the reason why 
in practice a pruning strategy is applied to reduce the 
number of configurations to store. Only the n  best 



configurations with minimal energy are stored. This 
parameter n  is the pruning threshold. This is the only 
parameter of this method, however it is very hard to 
determine . In fact, if this threshold is too low, the 
optimality of the final solution is not guaranteed, and 
on the contrary if it is too high the number of 
intermediate configurations to store and the 
combinatorial complexity become intractable. Due to 
this pruning, this method is suboptimal and the quality 
of the result depends on the merging order. We may 
consider different merging orders, as for example line 
horizontal merging, column vertical mergin, or 
alternative merging (fig. 2). Many other merging 
strategies can be used.  

Figure 2. alternative merging strategy 
 
Other optimization techniques have been proposed in 
the literature for image labeling using MRF-MAP 
framework, among which Mean Field Annealing[12], 
Genetic Algorithms[13], or Ant Colony System [14]. 
We do not describe these methods in this paper. 
 
3. Application of MRF labeling to 

handwritten document segmentation 
 
When using MRF-MAP labeling framework to 
segment images, one has simply to make some choices 
concerning the modelling of the probability density 
function of observation emission, the clique potential 
function and the optimization method used to 
minimize the energy function. In this work we are 
interested in segmenting handwritten documents, such 
as drafts or authorial manuscripts, into their 
elementary parts using a prior MRF model. We 
describe here our implementation choices to solve this 
task. 
 

• Probability densities 
 
The probability densities are modeled by gaussian 
mixtures. The parameters of the mixtures are learned 
on manually labelled images, using the EM algorithm. 
The number of gaussians is determined automatically 
using the Rissanen criterion. We use Bouman's 

CLUSTER software2 to learn the number of gaussian 
components and mixture parameters. 
 

• Clique potential functions 
  
We consider the second order cliques associated to a 
4-connected neighboring: 
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The interaction terms are defined as mutual 
information terms taking into account only the 
horizontal and vertical directions (4-connectivity): 
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As for the gaussian mixture parameters, these 
probabilities are learned on some labeled examples, by 
counting the frequency of each possible transition. If a 
rule transition does not appear in the learning 
examples, its probability is not set to zero but to a very 
low value, making it not impossible but very unlikely.  
 
Finally, the clique potential functions are defined as 
follows: 
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In a similar way, according to these definitions, the 
use of 2-order cliques with 8-connected neighboring is 
very simple. One has only to take into account 
diagonal interactions too. The different n-order clique 
forms associated to 4-connected and 8-connected 
neighboring are illustrated on figure 3. 

                                                        
2 http://dynamo.ecn.purdue.edu/~bouman/software/cluster 
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Figure 3. Neighboring systems of order 1 and 
2 with their corresponding cliques. 

 
• Observations 

 
Observations are features that are extracted on each 
site s  at the position ( )jig ,  on the grid G  applied on 
the image. As we work on binary images, we have 
choosen to extract for each site s  a bi-scale feature 
vector based on pixel density measurement. This 
vector contains 18 features. The first 9 are the density 
of black pixels in cell g(i,j) and its 8-connected 
neighbors at the first scale level. Based on the same 
principle, the remaining 9 features are the density of 
black pixels extracted at the second coarser scale level 
(see figure 4). Each cell at this scale corresponds to a 
3×3 window at the previous scale. Note that the size of 
the cells ( )jig ,  on the grid G  must be adapted to the 
size of the smallest objects or layout elements we want 
to extract in the image. The choice of this size is 
necessarily the result of a compromise between the 
segmentation quality and the computationnal efforts. 
The smaller the cells are, the more labeling is fine, but 
more there will be sites, so more complicated will be 
the energy minimization process. On our images, 
depending on the considered segmentation task, we 
are using different cell sizes. 
 

 
Figure 4. Multiresolution pixel density feature 

extraction 

• Decoding strategy 
 

To proceed to the decoding of the image by means of 
minimization of the energy function, we have 
implemented several of the methods described in the 
literature, mainly ICM, HCF, and 2D dynamic 
programming. We have tested and compared these 
methods. The results are provided in the next section. 
We have implemented simulated annealing too, but we 
have tested this algorithm only on very small images 
fragments, not on entire manuscript images, because 
of the very high computational complexity of this 
algorithm, so no results are provided. 
 
4. Results 
 
The analysis of the results of a document image 
segmentation algorithm is a difficult and not always a 
well defined task, since there exist very few protocols 
and image databases for performance evaluation [15]. 
The few existing ones are only designed for machine 
printed documents for which the proposed 
methodologies and metrics used to compare the 
algorithms are dedicated to well defined classes of 
methods or documents (newspaper, mail, form, postal 
address). To the best of our knowledge, there do not 
exist such methodologies and metrics in the field of 
handwritten documents or historical documents.  
As our approach is able to produce labelings at 
different analysis level using different grid sizes, we 
present here the results obtained on two different 
segmentation tasks working at two different scales. 
The first task consists on labeling large areas of 
interest  in manuscript images, such as text body, 
margins or text blocks, working at a coarse resolution. 
For this task we provide quantitative results in term of 
labeling rates and processing times, for several 
decoding methods.  The results obtained are also 
illustrated visually and discussed. With the second 
task, which consists on text line labeling, we show the 
ability of this approach to perform at finer level, in 
order to extract and separate small entities such as 
words or word fragments and erasures. For several 
reasons we explain, we provide for this task qualitative 
results only obtained on few images of full page of 
handwriting or parts of pages from the Bovary 
database.  
 
4.1. Zone Labeling 
 
In order to evaluate precisely the performance of our 
approach and compare the decoding methods 



according to labeling rate and processing time, we 
have first considered a segmentation task where a 
simple coarser labeling is possible. In this case, it is 
easy and fast to label a database of Flaubert 
manuscript images manually for model learning and 
groundtruthing. The task we consider consists in 
labeling the main regions of the manuscripts such as 
text body, margins, header, footer, page number, and 
marginal annotations (see Figure 5.a). The model 
contains 6 labels. The database contains 69 
manuscript images at 300 dpi. The average 
dimensions of the images are 2400×3700. All the 
images of the database have been binarized and 
manually labeled according to the defined 6 labels.  
The database has been divided into 3 parts: one for the 
learning of the model parameters (parameters of the 
gaussian mixtures, clique potential functions), an 
other for model setting, and the last one for testing. 
We have a regular grid where the dimensions of each 
cell are 50×50 pixels. We compare the results obtained 
with a Mixture Model using Maximum Likelihood 
criterion and the results obtained with ICM, HCF and 
2D Dynamic Programming (2D DP) decoding with the 
groundtruth labelings manually produced (Figure 5) 
For each decoding method we evaluate the global 
labeling rate (GLR) by counting the number of well-
labeled sites and the normalized labeling rate (NLR) 
by counting the average number of well-labeled sites 
for each label class.  
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For each decoding methods we also give the average 
processing time in seconds for one page decoding. 
This time is only related the to decoding process, 
probability distribution estimation is not taken into 
account. Results are provided in table 2. 
 

 Mixture
s 

ICM HCF 2D DP 

GLR (%) 88,0  86,6  90,3  84,6 
NLR (%) 83,7  87,5  88,2  87,4 
time (s) - 0,21 0,29 0,61 

Tab 2. labeling rates obtained with different 
decoding method 
  

 
(a) 

 

 
(b) 

 
Figure 5. Zone labeling at a coarser scale: (a) 
groundtruth (b) result with Markovian labeling 
using the following color/label convention:  
red = page number, green = header, blue = 
text body, pink = footer, cyan =  text block,  
yellow = margin. 
 
 
These results show that the use of a MRF model 
allows to increase the normalized labeling rate and 
that the HCF algorithm outperforms the other 
decoding methods. Furthermore HCF algorithm is 
faster than 2D dynamic programming method. The 
difference between GLR and NLR are due to non 
homogeneous class repartition in dataset (see Figure. 
6). 



 

 

Figure 6. Class distribution in dataset 

 
4.2. Text Line Labeling 
 
Let us recall that Flaubert's manuscripts contain a lot 
of deletions and crossed out words or lines (see figure 
1). Therefore, in this second experiment, we have tried 
to evaluate the capabilities of our method to work at at 
finer analysis level, on a specific task which consists 
in separating words (or parts of words) and deletions, 
and to extract text lines using a prior model which 
integrates several states. For this purpose we have  
first defined a model made up of 4 states: "pseudo-
word", "deletion", "diacritic" and "background". We 
work at the pixel level using a regular grid of 1×1 
cells and we use the the 2D Dynamic Programming 
method of Geoffrois for decoding. For this task we 
provide qualitative results only because it is very hard 
to manually label images at a pixel level for 
groundtruthing. Figure 7.a. presents the results 
obtained with this model on a page fragment. Figure 
8.a. shows a zoom on a deletion area where word and 
deletion strokes are completely connected. One can see 
on this result that the deletion lines are well separated 
from the strokes below. This result highlights the 
superiority of this method on the approaches working 
at the connected component level. Indeed, the fact of 
working at the pixel level allows us to segment 
different objects which are connected together. Figure 
8.b. shows similar results on a fragment containing a 
word and an erasure connected by a descending loop. 
Both components are well separated. 
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Figure 7. Segmentation results obtained on a 
page fragment: (a) using a 4-state model; (b) 
using a 5-state model; (c) using a 6-state 
model, with the following color/label 
convention: white = background, green = 
textual component, blue = erasure, pink = 
diacritic, cyan = interwords spacing, yellow = 
interline. 
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Figure 8. Segmentation results obtained on 
some complex page fragments using the 4-
state model. 
 
This model allows to extract word fragments and 
erasures, but does not model text lines, so we have 
refined it by introducing an additionnal "inter pseudo-
word space" state. The addition of this state makes it 
possible thereafter to extract the text lines because one 
can define a text line as a sequence of "pseudo-words" 
separated by "inter-word space". Thus from the results 
returned by the method, it is possible to extract text 
lines or other objects of higher level (such as text 
blocks for example), by applying label merging rules. 
Globally the results are promising, the inter-word 
spaces are well segmented (see figure 7.b).  
Finally in the same way, we have defined a third 
model with 6 states by adding an "interlines" state to 
the previous model, in order to model also the 
interlinear spacings. The knowledge of interlines 
allows to better segment text lines, and to detect text 
blocks. The result obtained with this model on the 
same page fragment is shown on figure 7.c and the 
result obtained on a full page is shown on figure 9. 
For these three models the results are globally 
satisfactory. However if we look locally at the results, 
we can see that some pixels are misclassified. One has 
to keep in mind that the 2D dynamic progamming 
algorithm with pruning procedure is a sub-optimal 
decoding algorithm. It means that the final 
segmentation obtained is not the optimal one. Some 
configurations of the label field can be locally less 
probable and thus be pruned during the merging 
procedure, whereas they could be globally the optimal 

ones. If the size of the image is large and if there are a 
lot of states in the model, the number of possible 
configurations of the label field is very large. In this 
case, it is not possible to store all the possible 
intermediate solutions, so the pruning threshold 
should not be too high. On the other hand, if this 
threshold is too low, the final configuration retained 
may be one of the least probable ones (because 
involving not probable transitions during the region 
merging). The choice of the merging strategy is 
important for the final segmentation result, but we 
think that the choice of  features extracted on the 
observations is important too. 
However these experiments on two different labeling 
tasks show the ability of the approach to work at 
different level of analysis and to extract area of 
interest in complex documents such as authorial 
manuscripts. The system could benefit of user 
interactions and multiscale approach to improve the 
labeling results. 
 
 

 
 

Figure 9. Segmentation results obtained on a 
complete Flaubert manuscript page using a 6-
state model with the following color/label 
convention: white = background, green = 
textual component, blue = erasure, pink = 
diacritic, cyan = interwords spacing, yellow = 
interline. 
 
 



5. Future works 
 
As pointed out by He in [16], Markov Random Fields 
have two main drawbacks. First, they make hypothesis 
about the independance of observations, for inference 
tractability reasons. These hypothesis are too strong 
for image labeling. For these reasons only local 
relationships between neighboring nodes are 
incorporated into the model. The second one is their 
generative nature. Markov Random Field attempt to 
model the joint distribution of the observed image and 
the corresponding label field, so a great effort is spent 
to model the observation distribution. However during 
the decoding the problem is to estimate the conditional 
distribution of the label field according to the observed 
image, there is no need to try to model the joint 
distribution, which may be very complex, but only the 
conditional distribution of the label field given 
observations. In consequence, less training data are 
needed. It is the reason why discrimative models, such 
as Conditional Random Fields , have been proposed 
recently to directly model this conditional distribution. 
Conditional Random Field have been introduced first 
by Laferty and Mc Callum [17], for part-of-speech 
tagging, that is to segment one-dimensional 
sequences, and have been adapted to image 
segmentation. In [15], He and al. propose a MLP-
based CRF implementation for image labeling, which 
aim to take into account and to learn features that 
operate at different scales of the image. Pointing the 
fact that labeling process needs contextual information 
because of the dependance of the labels accross the 
image, the authors propose a multiscale conditional 
random field model considering three analysis levels: 
a local analysis, a regional analysis and a global 
analysis.  
Up to now Conditional Random Field have not yet 
been applied to document image segmentation. In 
future work, and starting from our MRF model, we 
propose to transform it to a discrimative conditional 
model. 
 
6. Conclusion 
 

In this paper we have proposed to use Markov 
Random Field models to segment complex 
handwritten manuscripts into their elementary parts, 
such as text body, margins, header, footer, page 
numbers, deletions, ... by means of image labeling 
using different optimization techniques such ICM, 
HCF and dynamic programming. We have tested the 
approach on a dataset of manuscripts of french writer 

Gustave Flaubert. The proposed approach provides 
interesting results especially with HCF algorithm. The 
main advantages are the ability of Markov Random 
Fields to deal with local variability, to model prior 
knowledge and the learning possibilities which allow 
an easier adaptation to different type of documents. 
However due to their generative nature, Markov 
models suffer from several limitations. For this reason 
we plan in future works to provide our system an 
evolution towards Conditional Random Fields which 
are discriminative models. 
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