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Abstract

Image similarity measure is widely used in image pro-
cessing. For binary images that are not composed of a sin-
gle shape, a local comparison is interesting but the features
are usely poor (color) or difficult to extract (texture, forms).
We present a new binary image comparison method that
uses a windowed Hausdorff distance in a pixel-adaptive
way. It enables to quantify the local dissimilarities and
to give their spatial distribution which greatly improve the
dissimilarity information. Combined with a Support Vector
Machine classifier, this method is successfully tested on an
medieval-impression database.
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Introduction

Similarity measure is widely used in different domains:
image retrieval [8], image classification [2], image quality
evaluation [10], registration [1] ... Methods in the litera-
ture for similarity measure between images can be classified
into two approaches: a) an image feature extraction (shape,
curve, texture, histogram) followed by a feature compar-
ison; b) straight image comparison, i.e. without feature
extraction (e.g. SNR, MSE, Hausdorff distance). For the
binary images that are not composed of a single shape, the
color attribute is poor and sometime object shapes cannot be
clearly identified. In this case, the second approach, straight
image comparison, seems adapted. Nevertheless, it is in-
teresting to use a local comparison to compensate the lack
of shape extraction. Our work presents a new comparison
method that evaluates directly and locally the similarity be-
tween binary images without feature extraction and any a
priori knowledge.

In a first part, we define a local Hausdorff measure by
using a window and adapting the Hausdorff measure to it.
Then, in a second part, the window size is determined ac-
cording to the local dissimilarity. A mathematical expres-
sion of the local measure is given when the window slides
over the images to compare. Finally, in a third part, the de-
veloped measure is successfully applied in binary images
classification.

1 Binary image comparison method

1.1 Dissimilarity measure based on the
Hausdorff distance

Among dissimilarity measures over binary images, the
Hausdorff distance (HD) has often been used in the content-
based retrieval domain and is known to have successful ap-
plications in object matching [4] or in face recognition [9].
For finite sets of points, the HD can be defined as [4]:

definition 1 (Hausdorff distance) Given two non-empty
finite sets of points F = (f1, . . . , fn) and G =
(g1, . . . , gm) of R

2, and an underlying distance d, the HD
is given by

DH(F,G) = max (h(F,G), h(G,F )) (1)

where h(F,G) = max
f∈F

(
min
g∈G

d(f, g)
)

, (2)

h(F,G) is the so-called directed Hausdorff distance.
The classical HD has good properties but it measures the

most mismatched points between F and G, and as a conse-
quence it is sensitive to noise [6]. Indeed, considering two
images containing the same pattern and one point added to
the first image, far from the pattern, then the HD will mea-
sure the distance between the pattern and the point.
Several modifications of the HD have been proposed to
improve it such as: the partial HD [4], the modified HD
(MHD) [3], the censored HD [6], the ”doubly” modified



Hausdorff distance [9], the least trimmed squared HD [7]
and the weighted Hausdorff distance [5]. Those improved
HD are detailed in [11].

It is noticeable that except for the MHD, at least one ar-
bitrary parameter has to be determined. The parameter must
be chosen to make the measure as discriminating as possible
and it depends obviously on the kind of images, and some-
times on the compared images in the same application (e.g.
more or less dark or noisy images). The MHD matching
performance is not as good as the partial HD and the cen-
sored HD.
Moreover, these measures are global and cannot account for
local dissimilarities. Indeed, the principle of HD is to be a
”max min” distance so the value of the HD between two
images is reached for at least one couple of points. But it
doesn’t say if the value is reached in several parts or only
for one pair, which corresponds to different degrees of dis-
similarity. These remarks motivate us to design a local and
parameter-free HD in the next section.

1.2 Definition of the windowed Hausdorff
distance

The main reasons of the modification is that the DH is
not define for empty sets and this case is possible in a win-
dow. Moreover, the obtained measures when the window
is sliding or growing must be consistent. A solution is to
introduce the distance to the window side as it follows:

definition 2 (Windowed Hausdorff distance) Let F , G
be two bounded sets of R

2. HDW (F,G) =
max (hW (F,G), hW (G,F ))
where there are three cases

1. hW (F,G) =

max
f∈F∩W

[
min

(
min

g∈G∩W
d(f, g), min

w∈Fr(W )
d(f, w)

)]

if F ∩ W �= ∅ and G ∩ W �= ∅,

2. hW (F,G) = maxf∈F∩W

[
minw∈Fr(W ) d(f, w)

]
if

F ∩ W �= ∅ and G ∩ W = ∅,

3. 0 if F ∩ W = ∅,

where Fr(W ) stands for the frontier of the set W .

remark 1 • In case there is no point of F neither of G
in W , both of the directed distances are equal to 0 and
therefore the global distance too. This is consistent
with the fact that the two extracted parts are equal.

• In case there is exactly one set without point in W ,
one of the two directed distances is equal to 0 and the
expression of the other one takes into account the dis-
tance to the edge.

1.3 Window-size choice

The definition of the windowed HD enables to make a lo-
cal distance but it introduces a parameter which is the win-
dow size. It can be chosen by the user, or automatically
and globally, or locally according to the local surrounding.
The following properties of the windowed HD allow to fix
locally the window size and then to evaluate the local dis-
similarity.

property 1 (Identity) Let F , G be two bounded sets of
points of R

2, and W a convex closed subset of R
2.

HDW (F,G) = 0 ⇐⇒ F ∩ W = B ∩ W

The following properties need the window W to be a
ball.

property 2 (Boundary) Let x ∈ R
2 and r > 0, and let

define W = B(x, r) then HDW (F,G) ≤ HD(F,G).

This property ensures that the new pieces of information
that are taken into account when the window is enlarged do
not reduce the former dissimilarity-measure value.

property 3 (growth) Let V = B(xv, rv) and W =
B(xw, rw) be two close discs such as V ⊂ W then
HDV (F,G) ≤ HDW (F,G).

Prop. 2 and 3 ensure that a growing sequence of centered
windows gives an increasing and bounded sequence of mea-
sure values. It enables to give a stop criterion for such a
growing sequence of windows and to be sure it will be sat-
isfied. The measure obtained when the criterion is satisfied
is called local Hausdorff distance and the set of measures
obtained when this measure is computed for all the pixels is
called Local Distance Map (LDMap). The folowing para-
graph presents the algorithm associated to the stop criterion
that has been selected.

Algorithm

A practical algorithm for the computation of the local HD
map is proposed below (alg. 1). It consists of a sliding win-
dow whose radius is locally adapted to be optimal. It shows

Algorithm 1 Computation of LDMap

compute DH(F,G)
for all pixel x do

n := 1 {initialization of the window-size}
while HDB(x,n)(F,G) = n and n ≤ HD(F,G) do

n := n + 1
end while
LDMap(x) = HDB(x,n−1)(F,G) = n − 1

end for

the way to adapt the window to the local dissimilarity: this



Figure 1. Letters CO et ET and their LDMap
illustrating their local dissimilarities

step is done in the while loop. Nevertheless, this algorithm
is time consuming. Indeed, the computation complexity is
in O(m4) for two m × m pixel images. The next section
presents a formula for the measure that saves a most of the
time computation. The computation is faster but the inter-
pretation in terms of local dissimilarity measure comes from
algorithm 1.

1.4 Dissimilarity map

property 1 (LDMap mathematical formula)

∀x ∈ R
2,

CDL(x) = |B(x) − A(x)|max(d(x,A), d(x,B)) (3)

The formula gives for each pixel x a value that depends on
the distance transform of the sets A and B. Fast algorithms
have been developed for distance transformation. Their
computation complexity are O(m2) for m × m images. So
the LDMap complexity with the formula is a O(m2), which
is linear in the pixel number.

Figure 1 illustrates the notion of local dissimilarity. The
dissimilarities are quantified: big dissimilarities are repre-
sented in dark and small ones in bright. Moreover, they are
spatially localized: from the LDMap, one can see that the
bigger dissimilarities are situated on the straight line of the
”e” and on the top of the ”t”, so the corresponding dissimi-
larities are important. The ones between the left part of the
”o” and the bottom of the ”t” and between the loop of the
”e” and the ”c” are bright so they are small.

2 Application

The test database is composed of digitalized medieval
illustrations provided by Troyes’ library in the framework
of a collaboration with the laboratory CReSTIC. These im-
ages, originally printed in books, have strong contrast which
allows to binarize them with almost no loss. This database
is composed of 68 images, some of them illustrating the
same scene. The objective is to retrieve illustrations of the
same scene.

Fig 2 gives an illustration of medieval impressions and
their LDMaps. Fig 2(a) and 2(b) are similar so the higher

(a) Original impression (b) Similar impression

(c) Dissimilar impression

(d) LDMap between 2(a) et 2(b) (e) LDMap between 2(a) et 2(c)

Figure 2. Medieval impressions and their
LDMaps.

values are altogether in some parts (standing for the grass
and the helmets) of their LDMap (fig 2(d)). Fig 2(a) and
2(c) are dissimilar and the spatial distribution is more ran-
domized (fig 2(e)). The spatial information bring about 5%
of efficiency (cf tab 1).

One of the difficulties comes from the numerous classes
in the database:there are about 30 classes of similar im-
ages for the 68 images (some classes contain only one im-
age). The number of classes makes a straight comparison
on the images difficult and in addition, the choice of the
class number is awkward as far as new images can be in-
troduced and need the creation of a new class. Unlike to
the images, the LDMaps are classified into two classes: the
ones obtained by the comparison of similar images Csim

and the other ones by the comparison of two dissimilar im-
ages Cdissim. The introduction of news images does not
change the LDMap class number.

The comparison of the 68 images results in 2278
LDMaps, 125 of which are classified in Csim and 2153 in
Cdissim thanks to a manual comparison of the impressions
by an expert.

The experiment was carried out by the following way:
first a supervised learning is made on a set of 50 LDMaps



Successful retrieval LDMap HD PHD SVV
found in Csim 99% 60% 83% 94%
found in Cdissim 94% 75% 81% 88%

Table 1. Results for DH,W, the global HD, the
Partial HD (PHD) and for the Sorted Values
Vector of the LDMap (SVV). The PHD depends
on a parameter and the presented results for
the PHD are the best obtained.

in Csim and 50 in Cdissim.
Then, the test is done on a distinct set of 75 LDMaps of
Csim and 200 of Cdissim. The choice of the sets in each
class is randomized. Finally, we compare the results ob-
tained manually and automatically.

The efficiency of four measure methods has been tested:
our method (based on the LDMap), the global HD, the
partial HD and the LDMap Sorted Value Vector (SVV).
The last method is based on a vector including all the val-
ues of the LDMap that are sorted. As a consequence,
all the LDMap spatial information is lost. So the spatial-
information contribution can be quantified by comparison
with the LDMap results. The classification methods depend
on the measure :

• For our method and the SVV: the entry is a high di-
mension input. So the chosen classifier is based on a
SVM (with a polynomial kernel) with a leaning step.

• For the other methods, the input is a real number, so
an empirical distribution is computed on a learning set
for each class Csim and Cdissim, and the classification
is made with the maximum likelihood method.

The decision method is different whether the measure result
is an image (case of the LDMap) or a number (case of the
HD and its variations). In the first case, the classification
method is a SVM. In the second case, an empirical distribu-
tion for each class Csim and Cdissim is computed from the
learning set. The maximum likelihood method is used for
the classification.

Results are summarized in table 1. As the PHD depends
on a parameter, only the best results are presented in the
table. The results show the efficiency of the local distance
map both concerning spatial information (comparison with
the SVV) and the ability of the local HD to catch the lo-
cal dissimilarities (comparison with the global HD and the
partial HD).

3 Conclusion

A new comparison method is presented that enables the
local measure of the dissimilarities in the case of binary im-

ages. It based on a the Hausdorff distance that has been
adapted to be windowed. The result is a distance map that
give local dissimilarities measure and spatial distribution.
This map can be fast computed and allows a generaliza-
tion to gray-level images. Combined to a SVM classifier,
this map give better classification rates than the other tested
method.

Our aim is now to test it on a bigger database and to inte-
grate it in a high-level method so as to exploit its properties.
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[9] B. Takàcs. Comparing faces using the modified Haus-
dorff distance. Pattern Recognition, 31(12):1873–1881, Dec
1998.

[10] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli.
Image quality assessment: from error visibility to structural
similarity. IEEE transactions on image processing, 13(4),
Jan 2004.

[11] C. Zhao, W. Shi, and Y. Deng. A new Hausdorff distance for
image matching. Pattern Recognition Letters, 2004.


